GOVERNMENT DEGREE COLLEGE, RAZOLE, EAST GODAVARI DISTRICT

DEPARTMENT OF MATHEMATICS CERTIFICATE COURSE FOR 2020-21 "GRAPH THEORY"

GOVERNMENT DEGREE COLLEGE RAZOLE EAST GODAVARI DISTRICT

DEPARTMENT OF MATHEMATICS MINUTES OF THE DEPARTMENT

A staff meeting has been conducted in the department on 05-12-2020

- ➤ It is resolved to introduce "certificate course for the academic year 2020-21.
- ➤ It is resolved to conduct certificate course for the second year students.
- ➤ It is resolved to conduct classes for 30 working hours on the syllabus presented.
- ➤ It is resolved to approve the syllabus and model paper. it is resolved to conduct external examination for 50 marks as objective questions.

(VSV Krishna Murty)

VSV2 1

GOVERNMENT DEGREE COLLEGE RAZOLE DEPARTMENT OF MATHEMATICS

NOTICE

Razole 27-01-2021

To
The Principal
Government Degree College,
Razole.

Sir,

Sub: Government Degree College, Razole – Introduction of **Certificate Course** in "**GraphTheory**" during 2020-21- Proposal submitted for permission - Regarding.

I humbly submit that the Department of Mathematics proposes to conduct a Certificate course in "Graph Theory" during 2020 -21 based on the need of the students and resolution made in the Departmental Minutes book.

Hence, I request you to permit us to conduct the said course for the benefit of our students.

Thanking you sir

Yours faithfully,

(Lecturer in Mathematics)

V2/12 -1

GOVERNMENT DEGREE COLLEGE, RAZOLE EAST GODAVARI DISTRICT

DEPARTMENT OF MATHEMATICS

CERTIFICATE COURSE

IN GRAPH THEORY DURING 2020-21

OUTCOMES OF THE COURSE:

At the end of the course, the student is expected to learn the following outcomes

- He is able to learn the types of graphs
- He is able to learn and understand various types of paths like Euler and Hamiltonian paths
- He identifies shortest path problems and learns graph coloring.
- He understands the meaning of TREES in graph theory and its applications
- He learns about Minimum Spanning Trees by using Prim's Algorithm and Kurskal's Algorithms.

(Lecturer in Mathematics)

GOVERNMENT DEGREE COLLEGE, RAZOLE DEPARTMENT OF MATHEMATICS CERTIFICATE COURSE IN GRAPH THEORY FOR 2020-21

SYLLABUS

(No. of hours: 30) **UNIT I- GRAPHS**

1.TYPES OF GRAPHS:-

Simple Graph, Multi Graph, Pseudo Graph, Directed multigraph, Complete Graph, Bipartite Graphs 2.GRAPH ISOMORPHISM:-

Adjacency Matrices, Isomorphism of Graphs

3. CONNECTIVITY:-

Connectedness in undirected Graphs, Connected ness in Directed Graphs, Paths and Isomorphisms, Counting paths between Vertices

4. EULER AND HAMILTONIAN PATHS:-

Euler paths and circuits, Necessary and sufficient conditionsfor Euler circuits and paths, Hamiltonian paths and circuits

5. SHORTEST PATH PROBLEMS:-

Shortest path algorithm, Dijkstra's algorithm, Traveling salesman problem

6. PLANAR GRAPHS:-

K4, Q3, K3,3 Graphs, Eulers formula, Kuratowskis Algorithms, Homeomorphic Graphs

7. GRAPH COLORING:-

Chromatic Number, Application of Graph colorings

UNIT II - TREES

1. INTRODUCTION TO TREES:-

Tree, Rooted Trees, properties of Trees

2. APPLICATIONS OF TREES:-

Binary search Trees, prefix codes, Huffmans coding,

3. TREE TRAVERSAL:-

Preorder, post order, In order Traversals, Infix, Prefix and Postfix, Notations

4. SPANNING TREES:-

Depth First search, Breadth First

5. MINIMUM SPANNING TREES:-

Minimum Spanning Trees, Prim's Algorithm, Kruskal's Algorithms

SUGGESTED READINGS:

- 1. A Text Book of Discrete Mathematics & Its Applications by Kenneth H Rosen
- 2. A Text Book of Discrete Mathematics by Trembley & Manohar

Pattern of Examination

Theory (50 Marks)

The students have to write the theory examination Objective type for 50 marks 2 hours duration

(Lecturer in Mathematics)

GOVERNMENT DEGREE COLLEGE RAZOLE DEPAREMENT OF MATHEMATICS GRAPH THEORY 2020-21

(1st FEBRUARY 2021 to 17 th MARCH 2021) Work done statement of Certificate Course

Name of the Lecturer : VSV KRISHNA MURTY Subject :MATHEMATICS

Batch :1

Batch		:1	T TONYS	
S.NO	DATE	BATCH TIME	TOPIC	Name of the Lecturer taught
		(4.00 to 5.00 PM)		
1	1/2/2021	1Hr	Simple Graph, Multi Graph, Pseudo Graph,	VSV KRISHNA MURTY
2	2/2/2021	1Hr	Directed multi graph, Complete Graph, Bipartite Graphs	VSV KRISHNA MURTY
3	3/2/2021	1Hr	Adjacency Matrices,	VSV KRISHNA MURTY
4	4/2/2021	1Hr	Isomorphism of Graphs	VSV KRISHNA MURTY
5	5/2/2021	1Hr	Connectedness in undirected Graphs, Connected ness in Directed Graphs,	VSV KRISHNA MURTY
6	6/2/2021	1Hr	Paths and Isomorphisms	VSV KRISHNA MURTY
7	8/2/2021	1Hr	Counting paths between Vertices	VSV KRISHNA MURTY
8	9/2/2021	1Hr	Euler paths and circuits,	VSV KRISHNA MURTY
9	10/2/2021	1Hr	Necessary and sufficient conditions for Euler circuits and paths,	VSV KRISHNA MURTY
10	11/2/2021	1Hr	Hamiltonian paths and circuits	VSV KRISHNA MURTY
11	12/2/2021	1Hr	Shortest path algorithm,	VSV KRISHNA MURTY
12	15/2/2021	1Hr	Dijkstra's algorithm,	VSV KRISHNA MURTY
13	16/2/2021	1Hr	Traveling salesman problem	VSV KRISHNA MURTY
14	17/2/2021	1Hr	K4, Q3, K3,3 Graphs,	VSV KRISHNA MURTY
15	22/2/2021	1Hr	Eulers formula,	VSV KRISHNA MURTY
16	23/2/2021	1Hr	Kuratowskis Algorithms,	VSV KRISHNA MURTY
17	24/2/2021	1Hr	Homeomorphic Graphs	VSV KRISHNA MURTY
18	25/2/2021	1Hr	Chromatic Number,	VSV KRISHNA MURTY
19	26/2/2021	1Hr	Application of Graph colorings	VSV KRISHNA MURTY
20	27/2/2021	1Hr	Tree, Rooted Trees, properties of Trees	VSV KRISHNA MURTY
21	1/3/2021	1Hr	Binary search Trees,	VSV KRISHNA MURTY
22	2/3/2021	1Hr	prefix codes, Huffmans coding	VSV KRISHNA MURTY
23	3/3/2021	1Hr	preorder, post order, In order Traversals,	VSV KRISHNA MURTY
24	4/3/2021	1Hr	Infix, Prefix and Postfix	VSV KRISHNA MURTY
25	5/3/2021	1Hr	Notations	VSV KRISHNA MURTY
26	12/3/2021	1Hr	Depth First search Algorithm	VSV KRISHNA MURTY
27	13/3/2021	1Hr	Breadth First search Algorithm	VSV KRISHNA MURTY
28	15/3/2021	1Hr	Minimum Spanning Trees,	VSV KRISHNA MURTY
29	16/3/2021	1Hr	Prim's Algorithm	VSV KRISHNA MURTY
30	17/3/2021	1Hr	Kruskal's Algorithm	VSV KRISHNA MURTY

Pytoches

Gove Degree College

NAAC 'S' S. W.

Signature of the Lecturer(s)

GOVERNMENT DEGREE COLLEGE, RAZOLE, EGDT. ATTENDANCE PARTICULARS OF THE STUDENTS WHO ATTENDED CERTIFICATE COURSE IN GRAPH THEORY 2020-21

	1				Dı	ıratioı	n: 1st	Febru	ary 20)21 to	17th	Marc	h 2021	(30) ho	urs)				•	•				,						
			1/2/2021	2/2/2021	3/2/2021	4/2/2021	5/2/2021	6/2/2021	8/2/2021	9/2/2021	10/2/2021		12/2/2021	15/2/2021	16/2/2021	17/2/2021	22/2/2021		25/2/2021	26/2/2021	27/2/2021	1/3/2021	2/3/2021	3/3/2021	4/3/2021	5/3/2021	12/3/2021		15/3/2021	16/3/2021	17/3/2021
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 1	16 1	17 18	19	20	21	22	2 23	24	25	26	5 27	28	29	30
S.NO	NAME OF THE STUDE	REGD .NO.																													
1	A. Mass Raju	191077101001	Р	Р	Р	Р	Р	Р	Р	A	Р	Р	Р	P	P	P P	Р	А	Р	P	P	Р	А	Р	Р	Р	P	А	P	P P	
2	M. Sri	191077101005	Р	A	Р	Р	A	Р	Р	Р	A	Р	Р	P	P	P P	А	Р	Р	Р	Р	P	Р	A	Р	Р	Р	Р	Р	P P	
3	S.D.N. Varma	191077101009	P	P	P	P	A	Р	Р	P	Р	Р	P	Р	А	P P	Р	Р	Р	Р	Р	P	Р	P	Р	Р	P	Р	P	P P	
4	V.K.Sai Krishna	191077101011	Р	Р	Р	P	Р	Р	Р	A	Р	Р	P	Р	P	P P	Р	Р	Р	A	Р	Р	Р	P	Р	Р	Р	Р	Α	P P	
5	A. Sai	191077102012	Р	Р	Р	А	Р	Р	Р	P	Р	А	Р	Р	Р	P P	Р	А	Р	Р	Р	A	Р	Р	Р	Р	A	Р	Р	P P	
6	A.Lakshman Kumar	191077102013	Р	Р	Р	P	Р	Р	А	P	Р	Р	P	Р	P	A P	Р	А	Р	Р	Р	Р	Р	P	Р	Р	Р	Р	P .	A P	
7	D.Venkata Surya	191077102017	Р	Р	Р	Р	Р	А	Р	Р	Р	Р	Р	Р	Р	P P	Р	А	Р	Р	Р	Р	Р	Р	Р	Р	A	Р	Р	P P	
8	K.Sravani	191077102019	Р	Α	Р	Р	Р	Р	Р	Р	Р	Р	Р	Α	Р	P A	Р	Р	А	Р	Р	Р	Р	Α	Р	Р	Р	Р	Р	P P	
9	K.Durga Prasad	191077102021	Р	Р	Р	Р	Р	Р	Р	Р	A	Р	Р	Р	Р	P P	А	Р	Р	Р	А	Р	Р	Р	Р	Р	Р	Р	Р	P P	
10	K.Tanuja	191077102022	Р	Р	Р	Α	Р	Р	Р	Р	Р	Р	Р	Р	Р	P P	Р	А	Р	Р	Р	Р	Α	Р	Р	Р	Р	Α	Р	P P	
11	K.S.G.Sivani	191077102024	Р	Р	Р	А	Р	Р	Р	P	Р	Р	Α	Р	Р	P P	Р	Р	Р	Р	Р	Р	Р	Α	Р	Р	Р	Р	Р	P P	
12	N.Navya Sri	191077102026	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	P P	Р	Р	Р	Р	Р	Р	Р	Р	Р	А	Р	Р	Р	P P	
13	P.Geethanjali	191077102029	Р	Р	Р	Р	Р	Р	Р	P	Р	Р	Р	Р	Р	A P	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Α	Р	P P	
14	P.Kiran Kumar	191077102030	Р	Р	Р	Р	Р	Р	Р	Р	А	Р	Р	P	Р	P P	Р	Р	Р	А	P	Р	Р	P	Р	Р	P	P	P	P A	

Lecturer in Mathematics

GOVERNMENT DEGREE COLLEGE RAZOLE DEPARTMENT OF MATHEMATICS CERTIFICATE COURSE FOR 2020-21 GRAPH THEORY

Time: 2Hrs Answer the following questions.		Max Marks: $50 \times 1M = 50$	
1. A graph is a collection of?	()	
A) Row and columns B) Vertices and edges C) Equations D) None of these	()	
2. The degree of any vertex of graph is?	()	
A)The number of edges incident with vertex B)Number of vertex in a graph	`	,	
C) Number of vertices adjacent to that vertex D) Number of edges in a graph			
3A graph with no edges is known as empty graph. Empty graph is also know as?	()	
A) Trivial graph B) Regular graph C) Bipartite graph D) None of these	(
4If the origin and terminus of a walk are same, the walk is known as? A) Open B) Closed C) Path D) None of these	()	
5 .Radius of a graph, denoted by rad(G) is defined by?	()	
A) max {e(v): v belongs to V } B) min { e(v): v belongs to V}	(,	
C) max $\{d(u,v): u \text{ belongs to } v, u \text{ does not equal to } v\}$			
D) min $\{d(u,v): u \text{ belongs to } v, u \text{ does not equal to } v\}$			
6. A graph G is called a if it is a connected acyclic graph	()	
A Cyclic graph B Regular graph CTree D Not a graph			
7. A graph is a collection of	()	
A) Row and columns B) Vertices and edges C) Equations D)None of these			
8 How many relations are there on a set with n elements that are symmetric and a set w	ith n e	lements that are	e
reflexive and symmetric? A) $2n(n+1)/2$ and $2n.3n(n-1)/2$ B) $3n(n-1)/2$ and $2n(n-1)$	()	
C) $2n(n+1)/2$ and $3n(n-1)/2$ B) $3n(n-1)/2$ and $2n(n-1)/2$ D) $2n(n+1)/2$ and $2n(n-1)/2$			
9 In a graph if $e=(u, v)$ means	()	
A) u is adjacent to v but v is not adjacent to u B). e begins at u and ends at v	(,	
C) u is processor and v is successor D) both b and c			
10 A minimal spanning tree of a graph G is	()	
A) A spanning sub graph B) A tree C)Minimum weights D) All of above			
11. A partial ordered relation is transitive, reflexive and	()	
A) Antisymmetric B) Bisymmetric C) Anti reflexive D) Asymmetric			
12 A graph with n vertices will definitely have a parallel edge or self loop if the total nu	mber o	of edges are	
A) greater than $n-1$ B) less than $n(n-1)$,	`	
C) greater than $n(n-1)/2$ D) less than $n2/2$	()	
13 A vertex of a graph is called even or odd depending upon A) Total number of edges in a graph is even or odd	()	
B) Total number of vertices in a graph is even or odd			
C) Its degree is even or odd D) None of these			
14 The expression a + ac is equivalent to	()	
A) a B) $a + c$ C) c D) 1	`	,	
15 A graph with no edges is known as empty graph. Empty graph is also known as	()	
A)Trivial graph B) Regular graph C)Bipartite graph D)None of these			
16 A continuous non intersecting curve in the plane whose origin and terminus coincide)		
A) Planer B) Jordan C) Hamiltonian D) All of these	()	
17) A graph with n vertices will definitely have a parallel edge or self loop of the total r	number	of edges are	
A) more than n B) more than n+1 C) more than (n+1)/2 D) more than n(n-1)/2 18) Which of the following pair is not congruent modulo 7?	()	
18) Which of the following pair is not congruent modulo 7? A) 10, 24 B) 25, 56 C) 31, 11 D) 64, -15	()	
19) The maximum degree of any vertex in a simple graph with n vertices is	()	
A) n-1 B) n+1 C) 2n-1 D) n	(,	
20) Consider a weighted undirected graph with positive edge weights and let (u, v) be a	an edge	e in the graph. I	It is
known that the shortest path from source vertex s to u has weight 53 and shortest path f	from s	to v has weight	t 65.
Which statement is always true?	()	
A) Weight $(u, v) \le 12$ B) Weight $(u, v) = 12$			
C) Weight $(u, v) >= 12$ D) Weight $(u, v) > 12$			
21 How many onto (or surjective) functions are there from an n-element (n => 2) set to $\frac{1}{2}$	o a 2-e	lement set?	
A) $2n$ B) $2n-1$ C) $2n-2$ D) $2(2n-2)$	()	
22). Hasse diagram are drawn A Portiolly ordered sets. B Lattices. C Reclean algebra. D None of these	()	
A Partially ordered sets B Lattices C Boolean algebra D None of these 23) In how many ways can 5 balls be chosen so that 2 are red and 3 are black	()	
A) 910 B) 990 C) 970 D) None of these	()	
24) Circle has	()	
A) No vertices B) Only 1 vertex C) 8 vertices D) None of these	(,	
25) The proposition ~qvp is equivalent to	()	
A) $p?a$ B) $a?p$ C) $p?a$ D) $p?a$,		

26) If B is a Boolean Algebra, then which of the following is true	()	
A) B is a finite but not complemented lattice B)B is a finite, complemented and distribution		lattice	
C) B is a finite, distributive but not complemented lattice D) B is not distributive lattice	ce		
27 If R is a relation "Less Than" from $A = \{1,2,3,4\}$ to $B = \{1,3,5\}$ then RoR-1 is			
A) {(3,3), (3,4), (3,5)} B) {(3,1), (5,1), (3,2), (5,2), (5,3), (5,4)} C) {(2,2), (2,5), (5,2), (5,5)} D) {(1,2), (1,5), (2,2), (2,5), (4,5)}	(`	
C) {(3,3), (3,5), (5,3), (5,5)} D) {(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)}	()	
28 The number of distinguishable permutations of the letters in the word BANANA are A) 60 B) 36 C) 20 D) 10	3,)	
29 Let G be a simple undirected planar graph on 10 vertices with 15 edges. If G is a con	nected (<i>)</i> oranh ther	the
number of bounded faces in any embedding of G on the plane is equal to	nected §	graph, thei	i tiic
A) 3 B) 4 C) 5 D) 6	()	
30)A graph is tree if and only if	()	
A) Is planar B) Contains a circuit C) Is minimally D) Is completely connected		,	
31 How many different words can be formed out of the letters of the word VARANASI	?		
A) 64 B) 120 C) 40320 D) 720	()	
32) Suppose v is an isolated vertex in a graph, then the degree of v is	()	
A) 0 B) 1 C) 2 D) 3			
33) The complete graph with four vertices has k edges where k is	()	
A) 3 B) 4 C) 5 D) 6			
34 Which one of the following statements is incorrect?	(.,	
A) The number of regions corresponds to the cyclomatic complexity B) Cyclometric c	-	•	
for a flow graph G is $V(G) = N - E + 2$, where E is the number of edges and N is the number of edges and N is the number of edges.			
graph C) Cyclometric complexity for a flow graph G is $V(G) = E-N+2$, where E is the the number of nodes in the flow graph D) Cyclometric complexity for a flow graph G is		_	
the number of predicate nodes contained in the flow graph G	, v(U) -	– F + I, W	here r is
35) Choose the most appropriate definition of plane graph	()	
A) A graph drawn in a plane in such a way that any pair of edges meet only at their end	vertice	S	
B) A graph drawn in a plane in such a way that if the vertex set of graph can be partition			- empty
disjoint subset X and Y in such a way that each edge of G has one end in X and one end			
which is Isomorphic to Hamiltonian graph D) None of these			C 1
36) Length of the walk of a graph is	()	
A) The number of vertices in walk W B) The number of edges in walk W			
C) Total number of edges in a graph D)Total number of vertices in a graph			
37). A graph with one vertex and no edges is	()	
A) multigraph B) digraph C) isolated graph D) trivial graph			
38 In any undirected graph the sum of degrees of all the nodes	()	
A) Must be even B) Are twice the number of edges C) Must be odd D) Need not	be ever	n	
39) In a graph if e=[u, v], Then u and v are called A) Endpoints of a R) Adjacent nodes C) Neighbors D) All of above	()	
A) Endpoints of e B) Adjacent nodes C) Neighbors D) All of above 40). The number of leaf nodes in a complete binary tree of depth d is	()	
A) 2d B) 2d-1+1 C) 2d+1+1 D) 2d+1	()	
41). An undirected graph possesses an eulerian circuit if and only if it is connected and i	ts vertic	ces are	
A) All of even degree B) All of odd degree C)of any degree D) even in number	()	
42). The relation { (1,2), (1,3), (3,1), (1,1), (3,3), (3,2), (1,4), (4,2), (3,4)} is	Ì)	
A) Reflexive B) Transitive C) Symmetric D) None of these	·	ŕ	
43). In an undirected graph the number of nodes with odd degree must be	()	
A Zero B Odd C Prime D Even			
44. What is the probability of choosing correctly an unknown integer between 0 and 9	with 3 c	chances?	
A) 963/1000 B) 966/1000 C) 968/1000 D) None of these	()	
45). The complete graph K, has different spanning trees?	()	
A) nn-2 B) n*n C) nn D) n2	(`	
46). Eccentricity of a vertex denoted by e(v) is defined by?	(1000 11 Pr	,) ,	
A) max { $d(u,v)$: u belongs to v, u does not equal to v : where $d(u,v)$ is the distance betw B) min { $d(u,v)$: u belongs to v, u does not equal to v } C) Both A and B D) N	one of t	-	
47). A graph G is called a if it is a connected acyclic graph?	one or t)	
A Cyclic graph B Regular graph C Tree D Not a graph	(,	
48). Length of the walk of a graph is?	()	
A) The number of vertices in walk W B) The number of edges in walk W		,	
C) Total number of edges in a graph D) Total number of vertices in a graph			
49). If for some positive integer k, degree of vertex d(v)=k for every vertex v of the gra	ph G, th	nen G is ca	illed?
A K grap B K-regular graph C Empty graph D All of above	()	
50). The number of colours required to properly colour the vertices of every planer grap)	
A2 $B3$ $C4$ $D5$			
[cm/me			
Govt. Degree Conference -			
NAAC 'B' G. WAR RAZOLE - E.G.Dt.			

Answers 1.B-Vertices and edges 2.A-The number of edges incident with vertex 3. A-Trivial graph 4.B-Closed 5.A- $\max \{e(v): v \text{ belongs to } V \}$ 6.C-Tree 7.B-Vertices and edges 8.D-2n(n+1)/2 and 2n(n-1)/29.D- both b and c 10.D- All of above 11.A- Antisymmetric 12.A-greater than n-1 13.Its degree is even or odd 14.B-a+c 15.A- Trivial graph 16-C-Jordan 17.D-more than n(n-1)/218.B- 25, 56 19.A.n-1 20.C. Weight (u, v) >= 1221.C. 2n - 222.A. Partially ordered sets 23.B 990 24.A. No vertices 25.B. q?p 26.B. B is a finite, complemented and distributive lattice 27. C {(3,3), (3,5), (5,3), (5,5)} 28. A 60 29.D 6 30. C Is minimally 31. D 720 32. A 0 33. D 6 34. B Cyclometric complexity for a flow graph G is V(G) = N-E+2, where E is the number of edges and N is the number of nodes in the flow graph 35.A A graph drawn in a plane in such a way that any pair of edges meet only at their end vertices 36.B The number of edges in walk W 37. D. trivial graph 38. B Are twice the number of edges 39. D All of above 40 A 2d 41 A all of even degree 42 B Transitive 43. D Even 44. A 963/1000 45 A nn-2 46 A max { d(u,v): u belongs to v, u does not equal to v : where d(u,v) is the distance between u&v} 47 C Tree 48 B The number of edges in walk W 49 B K-regular graph

50 D 5

GOVERNMENT DEGREE COLLEGE RAZOLE DEPARTMENT OF MATHEMATICS CERTIFICATE COURSE FOR 2020-21 GRAPH THEORY

Time: 2Hrs		Max Marks:50M
Answer the following questions.		$50 \times 1M = 50 M$
1. A graph is a collection of?A) Row and columns B) Vertices and edges C) Equations D) None of these	()
2. The degree of any vertex of graph is? A)The number of edges incident with vertex B)Number of vertex in a graph C) Number of vertices adjacent to that vertex D) Number of edges in a graph	()
3A graph with no edges is known as empty graph. Empty graph is also know as? A) Trivial graph B) Regular graph C) Bipartite graph D) None of these	()
4If the origin and terminus of a walk are same, the walk is known as? A) Open B) Closed C) Path D) None of these	()
 5 .Radius of a graph, denoted by rad(G) is defined by? A) max {e(v): v belongs to V } B) min { e(v): v belongs to V} C) max { d(u,v): u belongs to v, u does not equal to v } D) min { d(u,v): u belongs to v, u does not equal to v } 	()
6. A graph G is called a if it is a connected acyclic graph A Cyclic graph B Regular graph CTree D Not a graph	()
7. A graph is a collection of	()
A) Row and columns B) Vertices and edges C) Equations D)None of these	with n o	lamants that ara
8 How many relations are there on a set with n elements that are symmetric and a set w reflexive and symmetric?	/Itil II el)
A) $2n(n+1)/2$ and $2n.3n(n-1)/2$ B) $3n(n-1)/2$ and $2n(n-1)$,
C) $2n(n+1)/2$ and $3n(n-1)/2$ D) $2n(n+1)/2$ and $2n(n-1)/2$		
9 In a graph if e=(u, v) means	()
A) u is adjacent to v but v is not adjacent to u B). e begins at u and ends at v C) u is processor and v is successor D) both b and c		
10 A minimal spanning tree of a graph G is	()
A) A spanning sub graph B) A tree C)Minimum weights D) All of above		,
11. A partial ordered relation is transitive, reflexive and	()
A) Antisymmetric B) Bisymmetric C) Anti reflexive D) Asymmetric		
12 A graph with n vertices will definitely have a parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the total number of the parallel edge or self loop if the parallel e	ımber c	of edges are
A) greater than n-1 B) less than n(n-1) C) greater than n(n-1)/2 D) less than n2/2	(`
13 A vertex of a graph is called even or odd depending upon	()
A) Total number of edges in a graph is even or odd	(,
B) Total number of vertices in a graph is even or odd		
C) Its degree is even or odd D) None of these		
14 The expression a + ac is equivalent to	()
A) a B) a + c C) c D) 1 15 A graph with no edges is known as empty graph. Empty graph is also known as	()
A)Trivial graph B) Regular graph C)Bipartite graph D)None of these	()
16 A continuous non intersecting curve in the plane whose origin and terminus coincide	e	
A) Planer B) Jordan C) Hamiltonian D) All of these	()
17)A graph with n vertices will definitely have a parallel edge or self loop of the total i	number	of edges are
A) more than n B) more than $n+1$ C) more than $(n+1)/2$ D) more than $n(n-1)/2$	()
18) Which of the following pair is not congruent modulo 7? A) 10, 24 B) 25, 56 C) 31, 11 D) 64, -15	()
19) The maximum degree of any vertex in a simple graph with n vertices is		()
A) n-1 B) n+1 C) 2n-1 D) n		
20) Consider a weighted undirected graph with positive edge weights and let (u, v) be a known that the shortest path from source vertex s to u has weight 53 and shortest path to Which statement is always true?	_	<u> </u>
Which statement is always true? A) Weight $(u, v) \le 12$ B) Weight $(u, v) = 12$	()
C) Weight $(u, v) >= 12$ D) Weight $(u, v) > 12$		
21 How many onto (or surjective) functions are there from an n-element ($n \Rightarrow 2$) set to	o a 2-e	lement set?
A) $2n$ B) $2n-1$ C) $2n-2$ D) $2(2n-2)$	()
22). Hasse diagram are drawn A Partially ordered sets. B Lattices. C Reclean algebra. D None of these	()
A Partially ordered sets B Lattices C Boolean algebra D None of these 23) In how many ways can 5 balls be chosen so that 2 are red and 3 are black	()
A) 910 B) 990 C) 970 D) None of these		,
24) Circle has	()
A) No vertices B) Only 1 vertex C) 8 vertices D) None of these		
25) The proposition \sim qvp is equivalent to	()
A) p?q B) q?p C) p?q D) p?q		

26) If B is a Boolean Algebra, then which of the following is true	()
A) B is a finite but not complemented lattice		
B)B is a finite, complemented and distributive lattice		
C)B is a finite, distributive but not complemented lattice		
D) B is not distributive lattice		
27 If R is a relation "Less Than" from $A = \{1,2,3,4\}$ to $B = \{1,3,5\}$ then RoR-1 is		
A) {(3,3), (3,4), (3,5)} B) {(3,1), (5,1), (3,2), (5,2), (5,3), (5,4)} C) {(3,3), (3,5), (5,3), (5,5)} D) {(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)}	(1
28 The number of distinguishable permutations of the letters in the word BANANA are,	()
A) 60 B) 36 C) 20 D) 10	()
29 Let G be a simple undirected planar graph on 10 vertices with 15 edges. If G is a connected planar graph on 10 vertices with 15 edges.	cted g	raph, then the
number of bounded faces in any embedding of G on the plane is equal to		1 ,
A) 3 B) 4 C) 5 D) 6	()
30)A graph is tree if and only if	()
A) Is planar B) Contains a circuit C) Is minimally D) Is completely connected		
31 How many different words can be formed out of the letters of the word VARANASI?		
A) 64 B) 120 C) 40320 D) 720	()
32) Suppose v is an isolated vertex in a graph, then the degree of v is	()
A) 0 B) 1 C) 2 D) 3	,	`
33) The complete graph with four vertices has k edges where k is	()
A) 3 B) 4 C) 5 D) 6 34 Which one of the following statements is incorrect?	()
A) The number of regions corresponds to the cyclomatic complexity	()
B) Cyclometric complexity for a flow graph G is $V(G) = N-E+2$, where E is the number	of edge	es and N is the
number of nodes in the flow graph	or cuge	and iv is the
C) Cyclometric complexity for a flow graph G is $V(G) = E-N+2$, where E is the number	of edge	es & N is the
number of nodes in the flow graph	U	
D) Cyclometric complexity for a flow graph G is $V(G) = P + 1$, where P is the number of	predic	ate nodes
contained in the flow graph G		
35) Choose the most appropriate definition of plane graph	()
A) A graph drawn in a plane in such a way that any pair of edges meet only at their end v		
B) A graph drawn in a plane in such a way that if the vertex set of graph can be partitione		- •
disjoint subset X and Y in such a way that each edge of G has one end in X and one end in	1 Y C)	A simple graph
which is Isomorphic to Hamiltonian graph D) None of these	(`
36) Length of the walk of a graph is A) The number of vertices in wells W. B) The number of edges in wells W.	()
A) The number of vertices in walk WB) The number of edges in walk WC) Total number of edges in a graphD)Total number of vertices in a graph		
37). A graph with one vertex and no edges is	()
A) multigraph B) digraph C) isolated graph D) trivial graph	(,
38 In any undirected graph the sum of degrees of all the nodes	()
A) Must be even B) Are twice the number of edges C) Must be odd D) Need not b	e even	,
39) .In a graph if e=[u, v], Then u and v are called	()
A) Endpoints of e B) Adjacent nodes C) Neighbors D) All of above		
40). The number of leaf nodes in a complete binary tree of depth d is	()
A) 2d B) 2d-1+1 C) 2d+1+1 D) 2d+1		
41). An undirected graph possesses an eulerian circuit if and only if it is connected and its	vertice	es are
A) All of even degree B) All of odd degree C) of any degree D) even in number	()
42). The relation { (1,2), (1,3), (3,1), (1,1), (3,3), (3,2), (1,4), (4,2), (3,4)} is A) Reflexive B) Transitive C) Symmetric D) None of these	()
43). In an undirected graph the number of nodes with odd degree must be	()
A Zero B Odd C Prime D Even	()
44. What is the probability of choosing correctly an unknown integer between 0 and 9		
with 3 chances?	()
A) 963/1000 B) 966/1000 C) 968/1000 D) None of these	`	,
45). The complete graph K, has different spanning trees?	()
A) nn-2 B) n*n C) nn D) n2		
46). Eccentricity of a vertex denoted by e(v) is defined by?	()
A) max { $d(u,v)$: u belongs to v, u does not equal to v : where $d(u,v)$ is the distance between	en u&v	' }
B) min { d(u,v): u belongs to v, u does not equal to v }		
C) Both A and B D) None of these	(`
47). A graph G is called a if it is a connected acyclic graph?	()
A Cyclic graph B Regular graph C Tree D Not a graph 48). Length of the walk of a graph is?	()
A) The number of vertices in walk W B) The number of edges in walk W	(,
C) Total number of edges in a graph D) Total number of vertices in a graph		
49). If for some positive integer k, degree of vertex d(v)=k for every vertex v of the graph	G, the	en G is called?
A K grap B K-regular graph C Empty graph D All of above	()
50). The number of colours required to properly colour the vertices of every planer graph	is	
A 2 B 3 C 4 D 5		V .

Answers 1.B-Vertices and edges 2.A-The number of edges incident with vertex 3. A-Trivial graph 4.B-Closed 5.A- $\max \{e(v): v \text{ belongs to } V \}$ 6.C-Tree 7.B-Vertices and edges 8.D-2n(n+1)/2 and 2n(n-1)/29.D- both b and c 10.D- All of above 11.A- Antisymmetric 12.A-greater than n-1 13.Its degree is even or odd 14.B-a+c 15.A- Trivial graph 16-C-Jordan 17.D-more than n(n-1)/218.B- 25, 56 19.A.n-1 20.C. Weight (u, v) >= 1221.C. 2n - 222.A. Partially ordered sets 23.B 990 24.A. No vertices 25.B. q?p 26.B. B is a finite, complemented and distributive lattice 27. C {(3,3), (3,5), (5,3), (5,5)} 28. A 60 29.D 6 30. C Is minimally 31. D 720 32. A 0 33. D 6 34. B Cyclometric complexity for a flow graph G is V(G) = N-E+2, where E is the number of edges and N is the number of nodes in the flow graph 35.A A graph drawn in a plane in such a way that any pair of edges meet only at their end vertices 36.B The number of edges in walk W 37. D. trivial graph 38. B Are twice the number of edges 39. D All of above 40 A 2d 41 A all of even degree 42 B Transitive 43. D Even 44. A 963/1000 45 A nn-2 46 A max { d(u,v): u belongs to v, u does not equal to v : where d(u,v) is the distance between u&v} 47 C Tree 48 B The number of edges in walk W 49 B K-regular graph

50 D 5

GOVERNMNET DEGREE COLLEGE, RAZOLE

EAST GODAVADI DISTRICT

DEPARTMENT OF MATHEMATICS

CERTIFICATE COURSE ON GRAPH THEORY FOR THE YEAR 2020-21

MARKS	ORTAINE	D IN THE	FYAMINA	TION

S.NO	NAME OF THE STUDENT	GROUP	REGD .NO.	MAX. MARKS
			1202 11101	50
1	A. Mass Raju	II BSC (MPC)	191077101001	35
2	M. Sri	II BSC (MPC)	191077101005	32
3	S.D.N. Varma	II BSC (MPC)	191077101009	27
4	V.K.Sai Krishna	II BSC (MPC)	191077101011	26
5	A. Sai	II BSC (MPCS)	191077102012	25
6	A.Lakshman Kumar	II BSC (MPCS)	191077102013	26
7	D.Venkata Surya	II BSC (MPCS)	191077102017	27
8	K.Sravani	II BSC (MPCS)	191077102019	31
9	K.Durga Prasad	II BSC (MPCS)	191077102021	28
10	K.Tanuja	II BSC (MPCS)	191077102022	26
11	K.S.G.Sivani	II BSC (MPCS)	191077102024	34
12	N.Navya Sri	II BSC (MPCS)	191077102026	32
13	P.Geethanjali	II BSC (MPCS)	191077102029	25
14	P.Kiran Kumar	II BSC (MPCS)	191077102030	25

VSV9 Lecturer in Mathematics

DEPARTMENT OF MATHEMATICS

Razole 18-03-2021

To, The Principal Government Degree College Razole

Sir,

Sub: Government Degree College, Razole – Department of Mathematics – Certificate Course in **Graph Theory** for 2020-21 - Submission of Work done statements and related documents -- Regarding.

I humbly submit that the Department of Mathematics has organized a Certificate course from 01-02-2021 to 17-03-2021 under the title "**Graph Theory** during 2020-21. The statement showing the work done together with the details of number of hours and the name of the faculty taught are submitted herewith.

Thanking you sir

Yours faithfully,

V8V2 3

(VSV KRISHNA MURTHY) (Lecturer in Mathematics)